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ABSTRACT

Understanding and communicating data uncertainty is crucial for
informed decision-making across various domains, including fi-
nance, healthcare, and public policy. This study investigates the
impact of gender and acoustic variables on decision-making, confi-
dence, and trust through a crowdsourced experiment. We compared
visualization-only representations of uncertainty to text-forward
and speech-forward bimodal representations, including multiple
synthetic voices across gender. Speech-forward representations led
to an increase in risky decisions, and text-forward representations
led to lower confidence. Contrary to prior work, speech-forward
forecasts did not receive higher ratings of trust. Higher normal-
ized pitch led to a slight increase in decision confidence, but other
voice characteristics had minimal impact on decisions and trust. An
exploratory analysis of accented speech showed consistent results
with the main experiment and additionally indicated lower trust rat-
ings for information presented in Indian and Kenyan accents. The
results underscore the importance of considering acoustic and con-
textual factors in presentation of data uncertainty.

Index Terms: Speech, acoustic characteristics, decision-making.

1 INTRODUCTION

In today’s world, where decisions are increasingly data-driven, ef-
fectively conveying uncertainty is critical for making sound choices
across domains such as finance, healthcare, and public policy [9,
46]. Data uncertainty encompasses a range of potential outcomes,
variability within datasets, and possible errors in predictions [45].
While precise data would ideally drive decision-making, exact in-
formation is often unavailable in real-world scenarios. Thus, com-
municating uncertainty becomes essential to understanding the true
state of the data. A primary challenge in communicating data uncer-
tainty lies in its interpretation. This task is fraught with challenges
around trust, reliability, and bias [6, 27, 58, 70]. While experts
might grasp statistical nuances like confidence intervals or p-values,
these concepts tend to be confusing for a lay audience [60].

Traditional methods for conveying uncertainty have predomi-
nantly focused on visual and textual tools. Visual aids such as er-
ror bars, confidence intervals, and density plots help illustrate data
variability, scope, and distribution [50]. In text, hedge words like
“somewhat” and “possibly” signal uncertainty [36]. In consider-
ing spoken communication, features such as pitch and speech rate
can indicate a speaker’s uncertainty or hesitation [4, 59]. How-
ever, each mode of communication has its trade-offs. Visualizations
require a level of graphical literacy that not all viewers possess,
while lengthy textual explanations can lead to limited comprehen-
sion. The transient nature of speech restricts the ability to revisit
information compared to text or visualizations.
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Recent research has highlighted the potential of multimodal ap-
proaches of visualizations, text, and speech to improve the commu-
nication of uncertainty [62, 63]. Speech, in particular, is relevant
for scenarios where quick, informed decisions need to be made that
rely on visual data that may be verbally communicated with inher-
ent uncertainties, such as in voice-activated systems (e.g., a voice
assistant communicating uncertain weather forecasts), telemedicine
(e.g., doctors or AI systems communicating uncertainty about di-
agnoses or treatment outcomes), and public policy announcements
(e.g., officials communicating complex and uncertain information
during a public health crisis). Despite the potential richness of
speech in conveying nuanced information, the role of acoustic vari-
ations in communicating uncertainty remains an understudied area;
existing research has largely overlooked how different speech pa-
rameters, such as pitch, speech rate, and speaker characteristics like
gender1 or accent affect the perception of uncertainty. Understand-
ing the variation across different voices and vocal characteristics is
important for comparing speech to other modes; some of the pre-
viously observed unique results for speech conditions could reflect
something about the particular audio stimuli rather than a broader
pattern of how people process auditory information.

This work seeks to address these gaps by systematically investi-
gating how variations in pitch, speaking rate, and speaker character-
istics impact the use of data uncertainty. Through a crowdsourced
experiment, we aim to further clarify and inform the trade-offs be-
tween different speech modalities and offer insights for designing
effective multimodal uncertainty communication strategies. Specif-
ically, our research contributions are:

• Replicating and extending prior work on communication
with different modes of information. Our findings corrobo-
rate increased risk for speech representations and lower confi-
dence for text representations but do not observe higher trust
for speech representations.

• Providing empirical evidence on the effects of gender and
acoustic variables in speech on the use of uncertain data.
Results demonstrate that while gender and acoustic features
among American voices do not significantly impact decision-
making outcomes, the normalized pitch does have an impact
on decision confidence.

• Exploratory investigations around accented speech and
decision-making. We completed an exploratory analysis of
additional speech variants, including British, Kenyan, and In-
dian accents. Preliminary findings suggest that Kenyan and
Indian accents may receive lower ratings of trust compared to
British and American accents. These results are exploratory
and warrant further investigation.

2 RELATED WORK

We examine prior work across three modes of data communication.

1We employ the terms “Woman” and “Man” to align with contemporary
norms which emphasize social and cultural roles of gender identity rather
than biological attributes. We acknowledge that these categories are not rep-
resentative of all genders [67]. However, synthesized speech sources such
as Microsoft Azure only offer binary options. As such, we move forward in
the paper, focusing exclusively on these two genders.
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2.1 Visualizing Uncertainty
Research on visualizing uncertainty has developed a broad array of
methods to assist in understanding and communicating data vari-
ability [39, 51, 66]. Showing uncertainty in data provides a more
accurate representation of the underlying data and its limitations,
but uncertainty can be challenging for readers to interpret correctly
[27]. Techniques such as error bars, confidence intervals, and den-
sity plots are commonly used to illustrate data variability and pro-
vide a graphical representation of potential outcomes [50]. How-
ever, these methods often require a level of graphical literacy that
not all users possess and can add visual artifacts to the design [7],
potentially leading to misinterpretations.

Prior research indicates that density plots and quantile dot plots
are effective ways to communicate data uncertainty [16, 30, 52],
but they can be complex to interpret if readers are unfamiliar with
the encodings [62]. In addition, research by Padilla et al. [50] and
Franconeri et al. [18] highlights a more comprehensive spectrum
of uncertainty visualization techniques and their empirical impacts
on decision-making. For example, ensemble visualization, which
involves displaying multiple potential outcomes or data scenarios,
can help users better grasp the range of possibilities inherent in un-
certain data. However, these methods also demand a higher cogni-
tive load and may not be suitable for all audiences. In contrast, icon
arrays can be effective for decision-making, particularly for viewers
with low numeracy or working memory capacity [3, 21]. Showing
uncertainty with simple visual techniques can lower the cognitive
load of interpretation [3].

Depending on the complexity of the visual and the task, visual-
izations may need to be supplemented with speech or text to provide
additional information and explanation. Visualizations can make
it easier for readers to identify critical information, but the infor-
mation itself may be more understandable in text [49]. However,
lengthy text might be distracting or cumbersome and reduce overall
comprehension. This workshop paper builds on prior visualization
research by comparing the effectiveness of visual modes against
various speech variants to further enhance understanding of uncer-
tainty communication.

2.2 Text Representations of Uncertainty
Lexical methods for conveying uncertainty typically involve the use
of hedge words and phrases that indicate varying degrees of cer-
tainty, such as “somewhat,” “possibly,” or “sort of” [36, 65]. These
linguistic cues help signal the probabilistic nature of information
and guide readers in interpreting data variability. The audience can
also form impressions based on other characteristics of how a mes-
sage is presented. For example, Hu and Pan [25] find that users are
more forgiving of AI service failures when the error is reported in
an informal ‘cute’ style than when it is reported in a formal style.

There is a trade-off between presenting information in text ver-
sus in speech audio. Some studies find that listener recall is higher
for the information presented in text than for the same information
presented in audio [20, 64]. However, naturally produced speech
does not typically have the same structure as a written text, which is
an important consideration when producing texts to be read aloud.
The mode of information might interact with its length; listeners
remember more information from a short paragraph when it is pre-
sented auditorily rather than in text, but for a longer passage, read-
ing the text results in better recall [31].

Prior research has shown that while text can effectively com-
municate uncertainty, it may reduce confidence in decision-
making [62]. Presenting information via speech rather than text can
increase the perceived trustworthiness [62, 71]. However, the dif-
ference between text and speech depends on context; Sundar [64]
finds that participants rate a text-only news site as more credible
than an audio-only site. One of the limitations of text is that it lacks
informative cues that are present in speech, such as tone or pitch.

2.3 Speech Communication
Speech offers a rich, multifaceted mode of communication that can
convey uncertainty through acoustic features such as pitch, speech
rate, and pauses. Despite its potential, the role of speech in com-
municating uncertainty has been relatively understudied. Existing
research has typically focused on either visual or textual representa-
tions, with limited exploration of how acoustic variables in speech
affect listener interpretation. Work examining how different voices
are perceived usually focuses on direct evaluations of the voice
rather than testing how the voice impacts how listeners interpret
the information provided in that voice.

Effects of gender on evaluations of speaker characteristics are
variable. Some studies find that women’s voices receive higher trust
ratings [23], while others find the inverse [37]. The listener’s gender
can also play a role; listeners are more likely to trust a voice match-
ing their own gender [37]. Men’s voices tend to receive higher rat-
ings of being authoritative [68] and competent [1], while women’s
voices receive higher ratings for a range of positive social traits such
as being friendly, sincere [68], warm [1], empathetic, and under-
standing [44]. The impact of voice gender varies based on the task;
listeners prefer women’s voices for social tasks and men’s voices
for informational tasks [38].

Some specific acoustic characteristics have been demonstrated
to impact the perception of speaker. One of the frequently studied
variables is pitch (the rate of vibration of the vocal folds, more pre-
cisely called “fundamental frequency (F0)”); pitch is usually nor-
malized in order to compare it to the average pitch among voices
of the same gender. Lower pitch increases perceived competence,
trustworthiness [48], and authoritativeness [68]. On the other hand,
voices with higher pitch are rated as being more cooperative [33]
and friendlier [68].

Listeners perceive utterances with faster speech rates as being
more credible than slower utterances and are more likely to be per-
suaded by faster speech [40, 43]. Faster speech is also rated as more
intelligent and more confident [5]. However, the positive views of
faster speech may be mediated by the listener’s own speech rate;
Feldstein et al. [15] find that listeners give the highest competence
ratings to speakers whose speech rates are similar to their own.

A few studies look at how the acoustic characteristics of an in-
terlocutor or virtual assistant’s voice impact decision-making. Pias
et al. [55] created an approximation of age and emotion differ-
ences based on manipulating pitch and speech rate; among women’s
voices, the combination of slower rate and higher pitch was found
to be more persuasive, whereas, for men’s voices, the combina-
tion of faster rate and lower pitch was found to be more persuasive.
However, Knight et al. [32] found that voice variants did not sig-
nificantly impact investment decisions in an economic game. In-
stead, participants responded to their partner’s behavior. These re-
sults might suggest that the effects of voice characteristics are out-
weighed when behavioral information is available.

Listeners’ associations and biases about particular social groups
can be extended to the linguistic characteristics produced by people
in those groups. For example, speakers of African American En-
glish are perceived as less credible than speakers of General Amer-
ican English [35], and speakers of British Received Pronunciation
are perceived as more intelligent and more confident than speakers
of other dialects [22]. Negative evaluations are apparent across a
range of non-standard accents (see [19] for a review).

This workshop paper builds on these findings by investigating
how different acoustic features and speaker characteristics influence
the perception of uncertainty.

3 STUDY

3.1 Motivation
This study builds on prior work comparing speech, text, and visual
representations of uncertainty [62, 63]. The work from Stokes et al.



found that speech led to higher ratings of trust than visual or text
information, though at times encouraged riskier decisions. That
work only tested unimodal representations, and the speech condi-
tions were limited to using one voice. We aimed to determine how
generalizable these results are over different voices.

In multimodal representations of information, visualization often
serves as the primary source of information, with text and speech
providing guiding and supporting roles [63]. However, there are
instances where text or speech may be more effective as the pri-
mary representation. Audiences may have visual impairments or
reading difficulties. They may be consuming information in envi-
ronments where visual attention is limited, such as while walking or
driving. Furthermore, with the rise of voice-activated assistants and
smart devices, understanding the effectiveness of speech-forward
data communication is increasingly important.

3.2 Stimuli
In this study, we examined bimodal representations of information,
combining visualization with text or speech information. We com-
pared eight different conditions in this study: one visual-only con-
dition, one text-forward condition, and six speech-forward condi-
tions. Examples of data presentations are shown in Fig. 1. All sup-
plemental materials, including stimuli, are available on OSF (link),
released under a CC BY 4.0 license.

In order to ensure that participants primarily used text or speech
information to make their decisions, we provided them the visu-
alization marks but removed the axes, as shown in Fig. 1. While
this is not typical or recommended visualization practice, this rep-
resentation isolates that visual from the visualization. By removing
the x-axis, we still provided some visual information and context
but could better isolate the impact of communicating information
primarily through text or speech. In particular, we tested different
speech variants (three women and three men).

3.2.1 Visual-only condition
To create the distributions for the visual-only condition, we gener-
ated a dataset with 100 data points by a normal distribution with
a standard deviation of 1, created with the rnorm function in R
(v4.3.0) [57]. This method does not create perfect normal distribu-
tions but rather allows for a more ecologically valid set of stimuli
since many distributions in the wild are not precisely normally dis-
tributed. The visual-only condition was a density plot [16, 30, 62]
created using the ggdist package in R [29].

3.2.2 Text-forward condition
The text-forward condition consisted of this same density plot with
the x-axis removed. Below the visual mark, a paragraph described
the distribution, including the most likely temperature, the mid-
dle quantile, the full range, and the skew of the distribution [34].
These features were extracted from the datasets generated for den-
sity plots. The template used for text paragraphs was as follows:

The most likely temperature low tonight might be around
[mean]ºF. There is a 50% chance that the temperature could
fall between [25th quantile] and [75th quantile]ºF. While
the range of possible lows could potentially span [mini-
mum] to [maximum]ºF, those extremes are less likely. It
also appears [likelihood term] more likely to be [skew di-
rection] within that range.

3.2.3 Speech-forward condition
The speech-forward conditions followed the same design. Below
the visual mark, we positioned an mp3 player that contained the
same information as present in the text paragraph. We applied the
same adjustments as in Stokes et al. [62]: a 0.2s delay, 5% pitch

(b)

(a)

(c)

Estimated Temperature

Estimated Temperature

Estimated Temperature

Figure 1: Example stimuli viewed by participants. (a) Visualization-
only representation. (b) Text-forward representation. The complete
text template can be found in Sec. 3.2.2. (c) Speech-forward repre-
sentation. Descriptions and links for speech-forward conditions can
be found in Sec. 3.2.3. The example in this image can be found here.

decrease, and 70% speed on numerical values, 5% pitch decrease,
and 65% speed on hedge or likelihood terms.

The speech stimuli used in this condition were generated using
Microsoft Azure’s Text-to-Speech (TTS) service [41] in conjunc-
tion with Speech Synthesis Markup Language (SSML) [72]. SSML
allows for control over speech parameters such as pitch, rate, vol-
ume, and pauses. We use prosody and break times in the SSML
to communicate uncertainty about temperature forecasts. Prosody
adjustments include reducing the speech rate and slightly lowering
the pitch of words providing key information. Break times, both
short and longer pauses, are used to separate and highlight spec-
ulative elements of the message, such as hedge words like ‘could
potentially’ and ‘more likely.’ Here is an example SSML snippet:

1 <speak xmlns=’http://www.w3.org/2001/10/synthesis’

xml:lang=’en-US’>

2 <voice name=’en-US-AmberNeural’>

3 The <prosody rate=’-35%’ pitch=’-5%’>most</

prosody> likely temperature low tonight <

prosody rate=’-35%’ pitch=’-5%’>might</prosody

> be <prosody rate=’-35%’ pitch=’-5%’>around</

prosody> <break time=’0.1s’/><prosody rate=’

-30%’ pitch=’-5%’>thirty four</prosody>

degrees Fahrenheit.

4 </voice>

5 </speak>

https://osf.io/mdz2y/
https://osf.io/kxqfw


We sourced six voices (three labeled by Microsoft Azure as ‘fe-
male’ and three as ‘male’) to generate the snippets. These voices
were selected based on their individual acoustic variations to en-
sure variation across conditions. Specifically, we chose the follow-
ing voices with the corresponding descriptions provided by the Mi-
crosoft Speech Service Voice Gallery [42]. Example forecasts for
each voice are linked below:

• Amber (WOMAN HIGH): An engaging voice for children’s
stories that’s warm and approachable, perfect for capturing
the attention of young listeners.

• Ava (WOMAN MEDIUM): A bright, engaging voice with a
beautiful tone that’s perfect for delivering search results and
capturing users’ attention.

• Jane (WOMAN LOW): An early-20s female voice like the girl
next door that’s warm and friendly, great for building a con-
nection with users.

• Guy (MAN HIGH): A friendly voice with slightly whimsical
undertones and a wide expressive range that can convey any
emotion with ease.

• Davis (MAN MEDIUM): A generally calm and relaxed voice
that can switch between tones seamlessly and be highly ex-
pressive when needed.

• Eric (MAN LOW): A friendly voice that conveys soft-spoken
confidence, inspiring trust and reliability with a calm and col-
lected tone.

3.3 Participants
We used the G*Power software [13, 14] for power analysis, aim-
ing to achieve a power of 0.95 with an alpha threshold of 0.05.
Through post-hoc power analyses from Stokes et al. [62], we found
a lower-bound effect size of 0.15. Based on the power analysis for
linear multiple regression with a maximum of 18 predictors (fore-
casts, speaker genders, participant genders, preferences, and speech
features), the optimal sample size was 212 participants.

275 participants were recruited from Prolific [53]. Participants
were required to be located in the United States, have at least a 95%
acceptance rate, and be fluent in English. This population is meant
to represent a sample of the general population, although subject to
the demographic distributions present among Prolific users. They
completed an 18-minute survey and were compensated $3.60. After
excluding responses that did not pass our attention checks (n = 57),
218 participant responses were analyzed.

Of these participants, 126 were women, 82 were men, 8 were
non-binary, and 2 did not indicate their gender. Participants were
fairly educated on average, with 83 having a 4-year degree and 45
with at least some college. Only 2 participants had less than a
high school education, and 34 were high school graduates. They
also tended to be mostly young adults; 43 participants were 18-24
years old, and 74 were 25-34 years old. Participants had a mod-
erate amount of experience with snow and ice. Most participants
(n= 127) had lived more than 10 years in an area that received snow
or ice during at least part of the year, and 64 participants had been
responsible for applying salt to an icy road or walkway. Further
details on demographics can be found in supplementary materials.

3.4 Method
3.4.1 Decision Framework
We use a similar decision framework as prior work [28, 47, 52] and
replicate the structure exactly from the work by Stokes et al. [62].
Participants were asked to decide whether to apply salt to roads
based on a low-temperature forecast for a given evening. In regions
prone to icy conditions, applying salt to roads is a common practice
to prevent accidents caused by slippery surfaces. Salt lowers the
freezing point of water, helping to melt the ice that forms on road
surfaces and reducing the likelihood of ice reformation.

They started with a fictional budget of $12,000. Applying salt
to the roads cost $1,000. If the temperature of the given evening
fell below 32ºF and the participant had not chosen to apply salt to
the road, they were penalized $3,000. Importantly, participants did
not receive information as to the outcome of their choice, so there
was no learning effect over the course of the survey. With this ratio
of Cost:Penalty, the objective, rational choice was to apply salt to
the roads if and only if the likelihood of the temperature falling
below 32ºF was at or above 33%. As an incentive to make cost-
effective decisions, participants received a $0.05 bonus for every
$1,000 remaining in the budget at the end of the survey.

3.4.2 Survey Design

Participants completed a Qualtrics [56] survey with five main sec-
tions. They began the survey with an introduction to the task at
hand, including a detailed explanation of the objectives. After being
introduced to the task, they also received a description of the fore-
cast they would use to make their decisions, including a description
of how to interpret or use a density plot. This was displayed based
on the condition assigned using embedded data in Qualtrics. This
was a between-participants design, meaning that each participant
only viewed one type of forecast through the survey.

Following this set of introductions, participants went on to com-
plete 12 decisions, which were presented in a random order. For
each decision, they reported the binary decision to apply salt or
not, and their confidence in this decision ranged from 50% to 100%
[69]. They also reported the likelihood that the temperature fell be-
low a value that was less than the bottom limit of the distribution’s
range, which was used as an attention check. Each decision was
also timed. Participants who spent less than 5 seconds on any given
decision were also excluded from the analysis.

After completing the 12 decisions, participants responded to a
measure of overall trust in the type of forecast viewed throughout
the survey. As in the work from Stokes et al., we used a multi-
item measure for “trust,” consisting of usefulness, clarity, and ac-
curacy [12, 54, 62, 73]. Each item was rated on a scale from 0 (not
clear/accurate/useful at all) to 10 (extremely clear/accurate/useful).
The midpoint of the scale was a rating of 5 (moderately clear/accu-
rate/useful). In the analysis of trust, these ratings were averaged to
provide a single value.

Participants also provided qualitative elaboration on their expe-
rience using the forecast, including aspects they liked and disliked
about the information provided. For participants who were assigned
to speech-forward forecasts, they answered an additional question
asking if they took other actions while listening to the speech fore-
cast. If they indicated that they were not sure if they did, they were
provided examples (e.g., write anything down, draw anything, re-
flect aloud, etc.). If a participant responded that they did take addi-
tional actions, they were asked to provide a description.

In the final part of the survey, participants reported relevant de-
mographics, including age range, education level, and gender. They
also ranked the three relevant modes of information (visual, text,
and speech) in order of preference. The final questions in this sec-
tion were about participant experience with snow and ice, including
how many years they had lived in an area where snow and ice were
common during at least part of the year, how often they encountered
icy road conditions during an average year, and whether they had
ever been responsible for salting or de-icing roads or walkways.

3.5 Hypotheses
The hypotheses tested in this study sought to replicate the results
from Stokes et al. by comparing speech, text, and visualization rep-
resentations of uncertainty, as well as expand the results to consider
variations of speech attributes. Hypotheses presented here are in
line with the findings from Stokes et al. and prior work on acoustic
variations and voice gender [1, 44, 68].

https://osf.io/rkwpy
https://osf.io/ubr9d
https://osf.io/bjdsr
https://osf.io/w9sp4
https://osf.io/bv852
https://osf.io/uwcs5


This study explored combinations of visuals with other modes
of information, particularly speech. These investigations are in
part confirmatory and part exploratory, as we seek to replicate ear-
lier findings on the matter while incorporating new variants to fur-
ther explore the area of multimodal data uncertainty. When mak-
ing broad comparisons across modes, we condensed the speech-
forward stimuli. We examined four attributes of decision-making:
crossover temperature, rationality of decision (conservative, risky,
or rational), decision confidence, and overall trust in the forecast.
We examine three attributes of speech: gender, pitch (average pitch,
normalized by gender), and speaking rate (duration of the first sen-
tence and length of the first pause). Although the SSML adjust-
ments described in Sec. 3.2 all use the same delay duration, this
attribute still varies slightly by voice.
Crossover temperature. Crossover temperature is the turning
point at which participants were equally likely to salt or not salt.
Optimal crossover temperatures were calculated by determining
the point at which a participant should start salting based on the
cost/penalty framework of the decision. For this study, optimal
crossover temperatures ranged from 32.3 to 32.5ºF. Our analysis fo-
cuses on how far participants tended to be, on average, from those
crossover temperatures. To calculate this, we follow methods from
prior work on decision-making with uncertainty [52, 62].

H1a: Based on previous work, all three modes seem equally ef-
fective in communicating basic information about the data and elic-
iting attentive decisions from participants. Thus, crossover tem-
peratures will be similar between traditional visualization, text-
forward, and speech-forward forecasts.

H1b-d: Men’s voices, voices with a lower pitch, and voices with
a faster speech rate tend to be perceived as more authoritative [68,
44] and competent [1]. Since there is little insight into the impact
of gender and acoustic variations on decision quality, we expect
that participants will make better decisions when they feel that they
are getting good or reliable information from the speaker. Thus,
crossover temperatures will be closer to optimal for men’s voices
than for women’s voices (b), for voices with a lower pitch than for
those with a higher pitch (c), and for voices with a faster rate of
speaking than for those with a slower rate (d).
Decision rationality. Decisions for this framework could be cate-
gorized as conservative (i.e., applying salt even though the likeli-
hood of freezing is low), risky (i.e., not applying salt even though
the likelihood of freezing is high), or rational (i.e., applying salt ap-
propriately). Stokes et al. [62] found that speech forecasts tended to
lead to more frequent risky decisions, possibly because speech feels
like a more casual data representation or because it offer fewer spe-
cific likelihood details than visual representations. H2a: Decisions
will be riskier for speech-forward forecasts than for traditional visu-
alization forecasts. H2b-d: Participants will make better decisions
when they think the speaker is more reliable, and previous work
suggests that perceived reliability is higher for men’s voices and for
voices with lower pitch and faster speech rate. Decisions will be
more frequently rational for men’s voices than for women’s voices
(b), for voices with a lower pitch than for those with a higher pitch
(c), and for voices with a faster rate of speaking than for those with
a slower rate (d).
Decision confidence. Stokes et al. found lower confidence for text
forecasts in comparison to visualization and speech forecasts, pos-
sibly because readers are more confident that they can identify rel-
evant information to inform their decision. H3a: Decision confi-
dence will be lower for text-forward forecasts than for traditional
visualization or speech-forward forecasts. H3b-d: Participants will
be more confident in their decisions when they think the speaker is
more reliable, and previous work suggests that perceived reliabil-
ity is higher for men’s voices and for voices with lower pitch and
faster speech rate. Decision confidence will be higher for men’s
voices than for women’s voices (b), for voices with a lower pitch

than for those with a higher pitch (c), and for voices with a faster
rate of speaking than for those with a slower rate (d).

Trust. H4a: Speech stimuli produce more of a social connection
than visualizations or text, which can increase trust. Trust in fore-
casts will be higher for speech-forward stimuli than for text-forward
stimuli or traditional visualizations.

Prior work indicates mixed findings regarding gender and trust
[23, 37]. While women’s voices tend to be perceived more
positively in social characteristics such as warmth and sincerity
[1, 44, 68], men’s voices tend to be perceived as having more au-
thority [1, 68]. The measure of trust is made up of perceived clarity,
accuracy, and usefulness, and it is likely that these three attributes
correspond more to the perception of reliability or authority than a
social dynamic of trust.

H4b-d: Participants will have more faith in a speaker they think
the speaker is more reliable, and previous work suggests that per-
ceived reliability is higher for men’s voices and for voices with
lower pitch and faster speech rate. Trust will be higher for men’s
voices than for women’s voices (b), for voices with a lower pitch
than for those with a higher pitch (c), and for voices with a faster
rate of speaking than for those with a slower rate (d).

4 RESULTS

Participants tended to be successful at the task, with an aver-
age remaining budget of $1,684 (average bonus of $0.08). Time
spent making the decisions was longer for speech-forward forecasts
(mean = 51 seconds) than for text-forward (36s) or traditional vi-
sualization (29s) forecasts. This difference can be accounted for at
least in part by the duration of the speech forecast, which averaged
around 30 seconds. Participants typically only played the speech
forecast one (69%) or two (22%) times for each trial.

Participants (n = 111) generally found the forecasts easy to un-
derstand with appropriate detail. Some participants (n = 27) dis-
liked the lack of the x-axis on the visual density mark provided,
and others did not enjoy the sound of the specific voice (n = 23).
These comments were relatively evenly spread across the different
voices. A subset of participants (n = 14) took additional actions
while listening to the speech forecast, with 12 participants writing
down the numbers mentioned.

We further analyzed participant responses in terms of decision
quality, confidence, and overall trust in the forecast [57]. When
comparing models, we used ANOVA testing for model selection.
Optimal models and significant findings (if present) are discussed.
We used a 0.05 cutoff for significance. When examining aver-
age pitch, we normalized this feature with respect to voice gender.
Model tables can be found in supplemental materials [24].

The findings tend to replicate those from Stokes et al. [62], with
one major discrepancy. We replicated the findings that crossover
temperature did not vary based on the mode of information, but
speech led to more frequent risky decisions. We also replicated that
decision confidence was lower for text-forward forecasts than for
speech-forward forecasts. However, we did not find that speech-
forward forecasts lead to higher trust. This may be due to the
bimodal representation compared to the unimodal representation
tested by Stokes et al.

Beyond replication, we also examined several new hypotheses
related to different elements of the speech forecasts themselves.
The quality or rationality of the decisions did not vary between dif-
ferent acoustic features. Normalized pitch did have a small effect on
decision confidence, but in the opposite direction as predicted. An
increase in pitch led to an increase in decision confidence. Speech
features had no effect on trust ratings.



4.1 Decision Quality

4.1.1 Crossover Temperature

Hypotheses about crossover temperature were evaluated with logis-
tic mixed effects models predicting the binary salting decision: “Do
not salt” (0) or “Salt” (1). We compared models using ANOVA test-
ing for model selection. Optimal models and significant findings (if
present) are discussed. We used a 0.05 cutoff for significance.

H1a: Crossover temperatures will be similar between traditional
visualization, text-forward, and speech-forward forecasts.

We found support for H1a. The optimal model for the salting
decision was the baseline model, which only included the distance
between the distribution mean and the optimal crossover tempera-
ture for the given distribution (crossover distance). This was com-
pared to the optimal model from Stokes et al. [62] as well as a
forecast-specific model to compare specific voices to each other.
We did not find that including any variables about participants’ ex-
periences with snow and ice improved model prediction.

Although differences between modes of information were not
statistically significant, observed crossover temperatures for tradi-
tional visualization forecasts were further from optimal crossovers
(0.38ºF) than for speech-forward forecasts (0.10ºF). Text-forward
forecasts were in the middle (0.17ºF).

H1b-d: Crossover temperatures will be closer to optimal for
men’s voices than for women’s voices (b), for voices with a lower
pitch than for those with a higher pitch (c), and for voices with a
faster rate of speaking than for those with a slower rate (d).

We did not find support for H2b-d. The optimal model for
speech-specific salting decisions was also the baseline model. This
model was compared to a series of models with increasing complex-
ity, with the most complex model including an interaction between
crossover distance and gender of the voice, the interaction between
voice gender and participant gender [37], and the three acoustic
variables of interest (mean pitch, duration of the first sentence, and
duration of the first pause). None of these variables improved the
prediction of salting decisions.

4.1.2 Decision Rationality

We evaluated decision rationality using χ2 tests when examining
categorical variables such as mode and fitting a linear model and
computing the ANOVA table when examining continuous vari-
ables. Exploratory testing indicated that there was no consistent
effect of participant experiences with snow and ice on decision
making rationality. The frequency of decision types can be seen
in Fig. 2.

H2a: Decisions will be riskier for speech-forward forecasts than
for traditional visualization forecasts.

We did find support for H2a (χ2 = 30.1, p = 0.003). We cor-
roborate one of the main findings from Stokes et al. [62]: speech
forecasts led to more frequent risky decisions than visualization
forecasts. Speech-forward forecasts had fewer rational decisions
than expected (standardresidual = −3.5) and more frequent risky
(SR = 2.9) and conservative decisions (SR = 2.1) relative to ex-
pected. Text-forward forecasts had fewer conservative decisions
than expected (SR = −2.5) and more frequent rational decisions
(SR = 2.0). Traditional visualizations also had more frequent ra-
tional decisions than expected (SR = 2.5) and less frequent risky
decisions (SR =−2.5).

These values support H2a and the prior findings. Exploratory
testing across the different speech-forward variants indicates that
there was not a significant difference between decision-making
across different voices (χ2 = 17.2, p = 0.069).

H2b-d: Decisions will be more frequently rational for men’s
voices than for women’s voices (b), for voices with a lower pitch
than for those with a higher pitch (c), and for voices with a faster
rate of speaking than for those with a slower rate (d).

Risky decisions more common 
for speech-forward forecasts.

Figure 2: Proportion of decision types for each forecast. Overall, de-
cisions were mostly rational. Speech-forward was the least rational
representation, with a greater proportion of risky decisions. This ob-
servation was true across different voices as well.

We did not find support for H2b-d. There was no difference in
decision rationality based on voice gender (χ2 = 0.34, p = 0.844).
There was also no effect of pitch (Bonferroni-adjusted p = 0.591),
the duration of the first sentence (Bonferroni-adjusted p = 1.00),
nor the duration of the first pause (Bonferroni-adjusted p = 0.641)

4.2 Confidence
Hypotheses about decision confidence were evaluated with lin-
ear mixed-effects models predicting the confidence rating, which
ranged from 50 to 100. Distributions of confidence ratings for dif-
ferent forecast variants can be seen in Fig. 3.

H3a: Decision confidence will be lower for text-forward fore-
casts than for traditional visualization or speech-forward forecasts.

We found partial support for H3a. The optimal model (p =
0.040) included a random effect for participant and fixed ef-
fects of the difference between mean temperature and the optimal
crossover, decision rationality, and mode of information. Speech-
forward forecasts led to higher confidence ratings compared to text-
forward forecasts (p = 0.031), but there was no significant differ-
ence between text-forward forecasts and traditional visualization
(p = 0.673). This effect was averaged over the different voices, and
the model, which included forecast variant-specific fixed effects,
did not improve prediction.

H3b: Decision confidence will be higher for men’s voices than
for women’s voices.

We did not find support for H3b. The optimal model (p< 0.001)
for speech-specific hypotheses included a random effect for partici-
pant and fixed effects of the crossover distance, decision rationality,
and acoustic features. However, it did not include voice gender, thus
providing no support for H3b.

H3c: Decision confidence will be higher for voices with a lower
pitch than for those with a higher pitch.

We did not find support for H3c. Normalized pitch did have a
significant effect in our model (p = 0.021) but in the opposite di-
rection. An increase of one standard deviation in normalized pitch
would result in a 2.01-point increase [1.15, 2.87] in confidence rat-
ings. This effect is about 4% of the confidence scale.



Confidence was lower for 
text-forward forecasts

Figure 3: Confidence ratings ranged from 50 to 100. Overall, con-
fidence was lower for text-forward (mean = 82.4) than for speech-
forward forecasts (mean = 85.5).

H3d: Decision confidence will be higher for voices with a faster
rate of speaking than for those with a slower rate.

We did not find support for H3d. Neither measure of the rate of
speaking had an effect on decision confidence.

4.3 Trust
Hypotheses about trust in forecasts were evaluated with linear mod-
els predicting the average trust rating, which ranged from 0 to 10.
Distributions of trust ratings for different forecast variants can be
seen in Fig. 3.

H4a: Trust in forecasts will be higher for speech-forward stimuli
than for text-forward stimuli or traditional visualizations.

We did not find support for H4a. Contrary to the findings from
Stokes et al., the optimal model was the baseline model, which only
included a fixed effect of the average rationality of the participant.
Neither mode nor forecast-specific effects improved prediction sig-
nificantly. It is possible that the bimodal presentation (compared to
the original unimodal representation) affected perceptions of trust.
We explore this further in Sec. 5.

H4b-d: Trust will be higher for men’s voices than for women’s
voices (b), for voices with a lower pitch than for those with a higher
pitch (c), and for voices with a faster rate of speaking than for those
with a slower rate (d).

We did not find support for H4b-d. Again, the optimal model for
the speech-specific hypotheses was the baseline model. We did not
see an improvement in prediction by including gender or acoustic
features. It is possible that the measure of trust used was evaluating
elements not affected strongly by specific features of speech.

5 DISCUSSION

Overall, the results of this study support prior insights [62] into the
impact of different modes of information on decision-making un-
der uncertainty. Although the number of voices tested (six) was
likely too small to make broad generalizations about acoustic fea-
tures, testing additional speech variants allows us to follow up on

Figure 4: Average trust ratings. There were no significant differences
between modes, but ratings were higher overall for speech-forward
forecasts (mean = 6.7) than for text-forward (mean = 6.3) or traditional
visualization (mean = 6.1).

the open questions left by prior work regarding the generalizability
of findings and the impact of voice gender on decision-making.

Speech-forward forecasts led to more frequent risky deci-
sions than text-forward or visualization-only forecasts. This re-
duced rationality may be due to a number of factors, including the
transient nature of speech and the effort required to hold informa-
tion in working memory; only a small subset of participants (8%)
wrote down information from the forecast. The increase in risky
decisions could also be due to aspects of the forecast that appear
emphasized in speech but not in text or visual representations. We
did not observe significant differences between different voices or
acoustic features, nor for different levels of snow experiences, al-
though there was variation between speech and the other modes, as
shown in Fig. 2. Variations observed between voices may be nat-
ural variations in task performance between participant groups or
may be influenced by aspects of speech that were not tested here.

Confidence in decisions when using text-forward forecasts is
lower compared to speech-forward forecasts. This finding is in-
teresting when considering that text-forward forecasts lead to more
frequent rational decisions than speech-forward forecasts and that
they offer the same information in the same words. This difference
could be interpreted as either a deflation of confidence when using
text or an inflation of confidence when using speech. The inclusion
of the visual mark did not increase confidence for text condition in
comparison to unimodal representations [62].

When comparing speech-forward forecasts, increased normal-
ized pitch led to increased confidence in the decision. Due to a
limited number of voices tested, it is difficult to make a general-
ized interpretation of this result. While previous work has found
that voices with lower pitch are perceived as more authoritative and
competent [1, 44, 68], this task asked participants to evaluate their
confidence in their own decisions. In this context, the socially pos-
itive perception of higher-pitched voices [68] may increase partici-
pants’ confidence.



It is also possible that listeners were less engaged with the lower-
pitched voices because those voices had some characteristics of
creaky phonation, which is perceived negatively [2]. Another po-
tential influence is the realization of /t/ between vowels. The voices
with the highest confidence ratings produced this consonant with a
full closure and aspirated release ([th]), while the speakers with the
lowest confidence ratings produced it as a flap ([R]). Other differ-
ences between the voices might also be responsible for the results,
given that pitch was not the only characteristic that differed. For
example, MAN MEDIUM and WOMAN MEDIUM have lower for-
mants (resonant frequencies) than the other voices.

Ratings of trust did not differ between the three modes of in-
formation. This result is in conflict with prior findings that speech
forecasts led to higher ratings of trust. It is possible that the bi-
modal representations tested in this experiment affected the clarity,
accuracy, and usefulness of the forecast. 11% of participants com-
mented that they disliked the visual mark or found it confusing to
interpret. The average trust rating for the bimodal speech-forward
forecast (6.7) was almost a full point lower than the rating for the
unimodal speech forecast (7.6) tested in prior work [62], indicating
there may have been an impact of introducing visual features.

Additionally, gender and acoustic features did not have an ef-
fect on trust ratings. Although previous work has found effects of
voice gender and specific acoustic characteristics on explicit eval-
uations of the voice [1, 23, 37, 44, 48, 68] as well as engagement
with advertisements [1, 11] and decisions about described scenar-
ios [23, 37], those biases might be outweighed in contexts where
behavioral information about the speaker’s reliability is available
[32]. In our study, the presence of the density mark might have
contributed to establishing all voices as accurately describing the
data. Gender biases might be more apparent when listeners make
decisions that are more subjective or not accompanied by support-
ing visualizations of the data.

5.1 Exploratory Study of Additional Speech Variants

Overall, findings were typically consistent across gender and acous-
tic features. However, there are other aspects of voices that were not
examined in this study, including accent and age. These character-
istics might impact comprehension, trust, and decision-making due
to varying degrees of familiarity and associated biases. Addition-
ally, as many virtual assistant technologies (e.g., Alexa, Siri) can
use different accents, understanding their effects is increasingly rel-
evant. We conducted a smaller, exploratory study to compare addi-
tional speech-forward forecasts, focusing primarily on comparisons
of different accents.

In this exploratory study, we tested seven additional speech vari-
ants: a child’s voice, a British accent, a Kenyan accent, and an
Indian accent. For each accent, we tested corresponding man and
woman voices. We could not test multiple variants of each com-
bination of gender and accent due to limitations in the Microsoft
Azure options. Speech stimuli were created using the same method
described in Sec. 3.2.3. The only change made to the study design
was the inclusion of measures of accent familiarity, including the
identification of the accent, report of personal experience, and a fa-
miliarity rating [26]. We recruited 105 participants from Prolific
[53], with 90 responses remaining after exclusions based on atten-
tion checks. Since this investigation was exploratory, we did not
complete any significance testing or examine any specific hypothe-
ses. Instead, we examined general trends and compared the new
variants to the original study conditions, all six of which had Amer-
ican accents. Interesting findings from this exploration are shown
in Fig. 5. Further details can be found in supplementary materials.

Overall, participants were most familiar with Indian and British
accents. 79% of participants could identify Indian accents, and 38%
had personal experience with someone who spoke with that accent.
Similarly, 75% of participants could identify British accents, and

(a)
Risky decisions 
consistent across 
speech variants

(b)

Man

Woman

Kenyan

Indian

British

American

Small confidence 
gains with pitch 
increases

(c)

Trust lower 
for Kenyan 
and Indian 
accents

Figure 5: Findings from an exploratory investigation of accents. (a)
Decision rationality between different voices tested. Risky decisions
were consistently more common for speech-forward forecasts but did
not vary by accent. (b) Confidence ratings and normalized pitch. Ac-
cent variants continued the minor trend observed in the experiment;
there were small gains in confidence for increases in pitch. (c) Trust
in forecast by accent and gender. Indian and Kenyan accents tended
to have the lowest average trust.

38% had personal experience. Participants tended to be less famil-
iar with the Kenyan accent, with only 29% of participants able to
identify it and 13% with personal experience.

The higher proportion of risky decisions for speech-forward
forecasts than for other modes was consistent across different ac-
cents, including the child’s voice. There was some variation in
decision riskiness across individual voices, but it did not fall into
clear patterns. Rationality between the different conditions tended
to be similar. The connection between increased confidence rat-
ings and increased normalized pitch was consistent when including



these variants as well, but we also did not observe a strong effect of
accent on its own.

Each component of the trust scores varied substantially across
voices. Both Indian voices and the Kenyan woman voice scored
lower on clarity, accuracy, and usefulness compared to American
and British accents. However, the Kenyan man voice did not. One
potential reason for this observation is that this voice had the fastest
speech rate of any variant tested; previous work shows that faster
speech is perceived as more credible and more persuasive [40, 43].
While the Indian voices had slower speaking rates, they were com-
parable to several other voices (WOMAN LOW, WOMAN BRITISH,
and KID); speech rate is not the only factor influencing these scores.
The effects of speech rate might be partially obscured by other vari-
ations across the voices, given the limited set of variants.

This exploration helps to further investigate how different speech
variants affect aspects of decision-making under uncertainty, illu-
minating possible effects on decision confidence and trust. The
findings of the main experiment also support prior work, expand-
ing our understanding of decision-making with different modes of
decision to more generalizable findings.

6 LIMITATIONS AND FUTURE WORK

The study was limited by the availability of synthetic voice options.
Even within the American English category tested in our main ex-
periment, the range of acoustic characteristics was narrow; the lim-
ited variation across voices imposed constraints on testing effects
of acoustic variables. Furthermore, control over independent voice
parameters was limited, which meant that discerning the specific
impact of various acoustic features on perception was speculative.

Additional complexities may have arisen from comprehensibil-
ity issues associated with unfamiliar or foreign accents, potentially
introducing a bias against out-group members [17]. The stimuli
also comprised binary gender voices that may not fully represent
the diversity of voice perceptions. While there is some previ-
ous research on the perception of nonbinary or gender-ambiguous
voices [68, 44], future work needs to explore the potential effects
of gender-ambiguous voices in communicating data uncertainty.

Our decision to remove axes from the visualization in the “text-
forward” and “speech-forward” conditions was unconventional in
standard visualization practices and so may pose a limitation for
these findings. This choice allowed us to better isolate the role of
text and speech but may limit the generalizability of our findings.
Future work in multimodal communication should examine a vari-
ety of visual representations, including the full visualization.

Further, the extent to which the observed effects translate to
tasks of differing personal importance or interest is unknown. For
example, the effects might differ in contexts like driving instruc-
tions, advertising, or opinion-based tasks such as political commen-
tary, where the personal stakes or engagement levels may alter how
speech is perceived and acted upon. The study findings also iden-
tify future research directions as well as implications for practical
domains in exploring the implications of voice in communicating
uncertainty across various domains and user needs.
Accessibility and personalization. For individuals with visual im-
pairments, rapid communication of textual information trades off
with decreased comprehensibility of fast speech produced by text-
to-speech systems [61]. Combining voice-driven systems with vi-
sual aids has the potential to significantly aid in visualizing data
uncertainty. For instance, a voice assistant could explain complex
graphical data, such as statistical uncertainty or probability distri-
butions, while the visual aid provides a graphical representation.
This dual-mode delivery can cater to users with different sensory
preferences or disabilities, ensuring that the information is accessi-
ble to all. The study did not account for individual user preferences
in choosing voice options, which could significantly affect the out-
comes. If users had the freedom to select voices, they might opt for

those that align more closely with their personal preferences or the
specific context of the task, potentially leading to different decision-
making outcomes than those observed under controlled experimen-
tal conditions.

Cross-cultural communication. Different cultures may have dis-
tinct preferences and interpretations regarding voice characteristics
such as tone, pitch, speed, and accent; what is considered a trust-
worthy voice in one culture may be perceived differently in an-
other [8]. Understanding these variations is crucial to help guide the
customization of voice attributes to align with cultural expectations,
reducing uncertainty and improving clarity in communication. The
perception of authority and trustworthiness through voice could af-
fect how information, particularly data that involves uncertainty, is
received by an audience [68].

Advertising. In the context of communicating data uncertainty,
advertising could play an important role by using strategic voice
characteristics to enhance trust, clarify ambiguities, and simplify
complex information [10]. Effective advertising can demystify un-
certainties associated with products like financial services, using a
trustworthy voice to reassure consumers and manage expectations.
Future research could explore how different voice characteristics
with corresponding data and visualizations influence consumer be-
havior in advertising (cf. [1, 11] for effects of voice characteristics).
By manipulating variables such as pitch, speed, and accent, market
studies can determine which acoustic features most effectively per-
suade different demographic groups.

News and journalism. The visual and vocal attributes of news
delivery play a significant role in how information is perceived
and trusted by the public. Different types of news might benefit
from specific voice attributes to match the content’s nature and ur-
gency. When reporting on stories with inherent uncertainties, such
as weather predictions, economic projections, or evolving health
crises, the voice delivering the news may significantly affect how
the information is received.

Long-term impact of voice on uncertainty communication. To
understand the long-term effects of voice characteristics on user
behavior and perception, longitudinal studies could be conducted.
These studies would provide insights into how consistent exposure
to certain voice types might influence user trust, satisfaction, and
loyalty over time. Longitudinal studies can also further investigate
how users adapt to and learn from voice-guided systems over time.
This exploration could include how users’ comprehension of and
responses to communicate uncertainties improve as they become
more familiar with a specific voice’s acoustical characteristics.

7 CONCLUSION

This study examined how speaker characteristics and acous-
tic variables impact decision-making in the context of uncer-
tainty communication. The findings suggest that the modal-
ity of information—whether through speech, text, or a combina-
tion—significantly influences how it is used and perceived. While
voices with the same accent showed minimal variation, certain
acoustic features, such as pitch, may still affect decision confi-
dence. Speech-forward conditions led to more frequent risky de-
cisions, emphasizing the importance of carefully designing speech
attributes in communication tools. Text-forward stimuli consis-
tently resulted in lower confidence compared to speech, indicating
a need for improved text utilization in multimodal strategies. Al-
though the study did not find significant differences in trust based
on voice gender or acoustic characteristics among American voices,
exploratory analysis suggests that accents could affect listener per-
ception. These insights identify research directions for further ex-
ploring the nuances around expressing uncertainty across various
multimodal contexts and applications.
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